最新公告
  • 欢迎您光临666资源站,各种优质it资源共享下载,精品资源,持续更新 咨询Q群 174856490
  • 文章介绍
  • 课程简介:

    专栏为推荐系统学习者架构起整体的知识脉络,并在此基础上补充实践案例与经验,力图解决你系统起步阶段 80% 的问题。

    概念篇:推荐系统有关的理念、思考,形而上的内容,虽然务虚但是必要。

    原理篇推荐算法的原理介绍与干货。了解推荐系统背后技术的基本原理后,你可以更快地开发和优化自己的系统,并且更容易去学习专栏中未涉及的内容。

    工程篇:推荐算法的实践内容。介绍推荐算法落地时需要一些纯工程上的大小事情,架构、选型、案例等,为你的实践之路推波助澜。

    产品篇:推荐系统要成功,还要考虑产品理念及其商业价值,此处介绍一些产品知识和一点浅显的商业思考。

    团队篇:个人该如何学习和成长,团队该招多少人又该有哪些人,以及产品经理和工程师该如何合作等问题。

    课程目录:

    推荐系统三十六式
    ├──01-开篇词 (1讲)
    | ├──00丨开篇词丨用知识去对抗技术不平等.html 2.04M
    | ├──00丨开篇词丨用知识去对抗技术不平等.mp3 2.97M
    | └──00丨开篇词丨用知识去对抗技术不平等.pdf 2.74M
    ├──02-第1章 概念篇 (3讲)
    | ├──【概念篇】个性化推荐系统那些绕不开的经典问题.html 1.75M
    | ├──【概念篇】个性化推荐系统那些绕不开的经典问题.mp3 4.01M
    | ├──【概念篇】个性化推荐系统那些绕不开的经典问题.pdf 2.07M
    | ├──【概念篇】你真的需要个性化推荐系统吗.html 1.58M
    | ├──【概念篇】你真的需要个性化推荐系统吗.mp3 5.24M
    | ├──【概念篇】你真的需要个性化推荐系统吗.pdf 1.66M
    | ├──【概念篇】这些你必须应该具备的思维模式.html 2.33M
    | ├──【概念篇】这些你必须应该具备的思维模式.mp3 4.49M
    | └──【概念篇】这些你必须应该具备的思维模式.pdf 2.22M
    ├──03-第2章 原理篇 (20讲)
    | ├──【MAB问题】简单却有效的Bandit算法.html 1.51M
    | ├──【MAB问题】简单却有效的Bandit算法.mp3 6.64M
    | ├──【MAB问题】简单却有效的Bandit算法.pdf 1.61M
    | ├──【MAB问题】结合上下文信息的Bandit算法.html 1.22M
    | ├──【MAB问题】结合上下文信息的Bandit算法.mp3 4.94M
    | ├──【MAB问题】结合上下文信息的Bandit算法.pdf 1.23M
    | ├──【MAB问题】如何将Bandit算法与协同过滤结合使用.html 1.62M
    | ├──【MAB问题】如何将Bandit算法与协同过滤结合使用.mp3 5.51M
    | ├──【MAB问题】如何将Bandit算法与协同过滤结合使用.pdf 2.35M
    | ├──【近邻推荐】解密“看了又看”和“买了又买”.html 1.52M
    | ├──【近邻推荐】解密“看了又看”和“买了又买”.mp3 5.69M
    | ├──【近邻推荐】解密“看了又看”和“买了又买”.pdf 1.68M
    | ├──【近邻推荐】人以群分,你是什么人就看到什么世界.html 1.29M
    | ├──【近邻推荐】人以群分,你是什么人就看到什么世界.mp3 6.16M
    | ├──【近邻推荐】人以群分,你是什么人就看到什么世界.pdf 1.71M
    | ├──【近邻推荐】协同过滤中的相似度计算方法有哪些.html 2.07M
    | ├──【近邻推荐】协同过滤中的相似度计算方法有哪些.mp3 4.49M
    | ├──【近邻推荐】协同过滤中的相似度计算方法有哪些.pdf 1.98M
    | ├──【矩阵分解】Facebook是怎么为十亿人互相推荐好友的.html 1.54M
    | ├──【矩阵分解】Facebook是怎么为十亿人互相推荐好友的.mp3 5.44M
    | ├──【矩阵分解】Facebook是怎么为十亿人互相推荐好友的.pdf 1.78M
    | ├──【矩阵分解】那些在Netflix Prize中大放异彩的推荐算法.html 1.30M
    | ├──【矩阵分解】那些在Netflix Prize中大放异彩的推荐算法.mp3 5.65M
    | ├──【矩阵分解】那些在Netflix Prize中大放异彩的推荐算法.pdf 1.60M
    | ├──【矩阵分解】如果关注排序效果,那么这个模型可以帮到你.html 1.89M
    | ├──【矩阵分解】如果关注排序效果,那么这个模型可以帮到你.mp3 5.31M
    | ├──【矩阵分解】如果关注排序效果,那么这个模型可以帮到你.pdf 2.59M
    | ├──【模型融合】经典模型融合办法:线性模型和树模型的组合拳.html 1.73M
    | ├──【模型融合】经典模型融合办法:线性模型和树模型的组合拳.mp3 7.91M
    | ├──【模型融合】经典模型融合办法:线性模型和树模型的组合拳.pdf 2.16M
    | ├──【模型融合】深度和宽度兼具的融合模型 Wide and Deep.html 2.45M
    | ├──【模型融合】深度和宽度兼具的融合模型 Wide and Deep.mp3 6.62M
    | ├──【模型融合】深度和宽度兼具的融合模型 Wide and Deep.pdf 3.39M
    | ├──【模型融合】一网打尽协同过滤、矩阵分解和线性模型.html 1.48M
    | ├──【模型融合】一网打尽协同过滤、矩阵分解和线性模型.mp3 4.54M
    | ├──【模型融合】一网打尽协同过滤、矩阵分解和线性模型.pdf 1.41M
    | ├──【内容推荐】超越标签的内容推荐系统.html 1.61M
    | ├──【内容推荐】超越标签的内容推荐系统.mp3 4.72M
    | ├──【内容推荐】超越标签的内容推荐系统.pdf 2.16M
    | ├──【内容推荐】从文本到用户画像有多远.html 1.26M
    | ├──【内容推荐】从文本到用户画像有多远.mp3 8.74M
    | ├──【内容推荐】从文本到用户画像有多远.pdf 1.57M
    | ├──【内容推荐】画鬼容易画人难:用户画像的“能”和“不能”.html 1.73M
    | ├──【内容推荐】画鬼容易画人难:用户画像的“能”和“不能”.mp3 4.84M
    | ├──【内容推荐】画鬼容易画人难:用户画像的“能”和“不能”.pdf 1.81M
    | ├──【其他应用算法】构建一个科学的排行榜体系.html 1.47M
    | ├──【其他应用算法】构建一个科学的排行榜体系.mp3 5.37M
    | ├──【其他应用算法】构建一个科学的排行榜体系.pdf 1.53M
    | ├──【其他应用算法】实用的加权采样算法.html 1.17M
    | ├──【其他应用算法】实用的加权采样算法.mp3 3.44M
    | ├──【其他应用算法】实用的加权采样算法.pdf 1.45M
    | ├──【其他应用算法】推荐候选池的去重策略.html 1.97M
    | ├──【其他应用算法】推荐候选池的去重策略.mp3 4.12M
    | ├──【其他应用算法】推荐候选池的去重策略.pdf 1.90M
    | ├──【深度学习】深度学习在推荐系统中的应用有哪些.html 1.69M
    | ├──【深度学习】深度学习在推荐系统中的应用有哪些.mp3 5.93M
    | ├──【深度学习】深度学习在推荐系统中的应用有哪些.pdf 2.15M
    | ├──【深度学习】用RNN构建个性化音乐播单.html 2.10M
    | ├──【深度学习】用RNN构建个性化音乐播单.mp3 5.05M
    | └──【深度学习】用RNN构建个性化音乐播单.pdf 1.89M
    ├──04-第3章 工程篇 (10讲)
    | ├──【常见架构】Netflix个性化推荐架构.html 2.11M
    | ├──【常见架构】Netflix个性化推荐架构.mp3 5.63M
    | ├──【常见架构】Netflix个性化推荐架构.pdf 2.20M
    | ├──【常见架构】典型的信息流架构是什么样的.html 1.24M
    | ├──【常见架构】典型的信息流架构是什么样的.mp3 6.43M
    | ├──【常见架构】典型的信息流架构是什么样的.pdf 1.64M
    | ├──【常见架构】总览推荐架构和搜索、广告的关系.html 2.12M
    | ├──【常见架构】总览推荐架构和搜索、广告的关系.mp3 5.02M
    | ├──【常见架构】总览推荐架构和搜索、广告的关系.pdf 2.17M
    | ├──【关键模块】 推荐系统服务化、存储选型及API设计.html 2.58M
    | ├──【关键模块】 推荐系统服务化、存储选型及API设计.mp3 5.93M
    | ├──【关键模块】 推荐系统服务化、存储选型及API设计.pdf 2.39M
    | ├──【关键模块】巧妇难为无米之炊:数据采集关键要素.html 1.55M
    | ├──【关键模块】巧妇难为无米之炊:数据采集关键要素.mp3 6.97M
    | ├──【关键模块】巧妇难为无米之炊:数据采集关键要素.pdf 2.07M
    | ├──【关键模块】让你的推荐系统反应更快:实时推荐.html 1.76M
    | ├──【关键模块】让你的推荐系统反应更快:实时推荐.mp3 6.60M
    | ├──【关键模块】让你的推荐系统反应更快:实时推荐.pdf 1.97M
    | ├──【关键模块】让数据驱动落地,你需要一个实验平台.html 1.76M
    | ├──【关键模块】让数据驱动落地,你需要一个实验平台.mp3 5.90M
    | ├──【关键模块】让数据驱动落地,你需要一个实验平台.pdf 2.08M
    | ├──【开源工具】和推荐系统有关的开源工具及框架介绍.html 2.84M
    | ├──【开源工具】和推荐系统有关的开源工具及框架介绍.mp3 2.80M
    | ├──【开源工具】和推荐系统有关的开源工具及框架介绍.pdf 3.54M
    | ├──【效果保证】道高一尺魔高一丈:推荐系统的攻防.html 1.04M
    | ├──【效果保证】道高一尺魔高一丈:推荐系统的攻防.mp3 7.71M
    | ├──【效果保证】道高一尺魔高一丈:推荐系统的攻防.pdf 1.36M
    | ├──【效果保证】推荐系统的测试方法及常用指标介绍.html 1.21M
    | ├──【效果保证】推荐系统的测试方法及常用指标介绍.mp3 5.62M
    | └──【效果保证】推荐系统的测试方法及常用指标介绍.pdf 1.28M
    ├──05-第4章 产品篇 (3讲)
    | ├──【产品篇】说说信息流的前世今生.html 999.27kb
    | ├──【产品篇】说说信息流的前世今生.mp3 5.54M
    | ├──【产品篇】说说信息流的前世今生.pdf 1.48M
    | ├──【产品篇】推荐系统在互联网产品商业链条中的地位.html 1.15M
    | ├──【产品篇】推荐系统在互联网产品商业链条中的地位.mp3 4.54M
    | ├──【产品篇】推荐系统在互联网产品商业链条中的地位.pdf 1.22M
    | ├──【团队篇】组建推荐团队及工程师的学习路径.html 1.06M
    | ├──【团队篇】组建推荐团队及工程师的学习路径.mp3 4.65M
    | └──【团队篇】组建推荐团队及工程师的学习路径.pdf 1.16M
    └──06-尾声与参考阅读 (2讲)
    | ├──【尾声】遇“荐”之后,江湖再见.html 2.22M
    | ├──【尾声】遇“荐”之后,江湖再见.mp3 2.27M
    | ├──【尾声】遇“荐”之后,江湖再见.pdf 3.45M
    | ├──推荐系统的参考阅读.html 1.03M
    | ├──推荐系统的参考阅读.mp3 954.76kb
    | └──推荐系统的参考阅读.pdf 1.28M

    666资源站是一个优秀的资源整合平台,海量资料共享学习
    666资源站 » 推荐系统三十六式 极客时间

    常见问题FAQ

    视频课程的格式是什么
    视频不加密,网盘在线学习,课程免费更新,持续更新
    怎么发货?
    自动发货,提供百度云链接和提取码【如失效点击网站右侧联系客服】】
    有些资源没更新完结怎么办
    本站资源包更新至完结,后续可以点击链接获取
    有问题不懂想咨询怎么办
    咨询邮箱:2582178968@qq.com Q群:790861894
    • 34223 资源总数(个)
    • 23本周发布(个)
    • 0 今日发布(个)
    • 3858稳定运行(天)

    666资源站国内最专业的学习课程平台

    加入我们
    升级SVIP尊享更多特权立即升级